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The cohomology of infinite Grassmannians
We now turn to the question of how to calculate the cohomology of Grassmann manifolds. Recall from problem sheet 1 on

characteristic classes that for m ≤ n ≤ ∞ the space Gm(Rn) parametrises m-dimensional vector subspaces of Rn. Similarly,
Gm(Cn) parametrises m-dimensional vector subspaces of Cn. We will also need the orientable Grassmannian G̃m(Rn) which
parametrises oriented m-dimensional vector subspaces of Rn. These spaces come equipped with the tautological vector
bundles which are denoted γm(Rn), γm(Cn) and γ̃m(Rn) respectively.

The bundle γ̃m(Rn) is oriented (and γm(Rn) is not: it is not even orientable; why, by the way?). But these bundles
are similar to γm(Rn) in that they are universal oriented vector bundles: Every real oriented vector bundle of rank m on a
Hausdorff paracompact space (e.g. a CW-complex) X is isomorphic to f∗(γ̃m) for some f : X → G̃m(R∞). Moreover, the
bundles f∗(γ̃m) and g∗(γ̃m) are isomorphic as oriented bundles iff f, g : X → G̃m(R∞) are homotopic.

There is an orientation-forgetting map G̃m(Rn) → Gm(Rn) which is a covering map and, in fact, the universal cover.
We will sometimes write Gm for Gm(R∞) or Gm(C∞) and G̃m for G̃m(R∞). The space G̃m = G̃m(R∞) is also denoted
BSO(m). Later we will see why.

See e.g. Milnor-Stasheff, §§5, 12 and 14 for more details on how these spaces are constructed. In the sequel we need the
following: Gm(Rn) has a CW-structure such that the number of cells of dimension r is the number of partitions of r into
≤ m integers each of which is ≤ n−m. Note that this includes the case n =∞ as well. See Milnor-Stasheff, ibid., Corollary
6.7. Similarly, Gm(Cn) has a CW-structure with no cells of odd dimension and such that the number of cells of dimension
2r is the number of partitions of r into ≤ m integers each of which is ≤ n−m.

Question 1. Show that H∗(Gm(R∞),Z/2) is the algebra of polynomials in w1(γm), . . . , wm(γm) over Z/2. [Hint: induce
γ1 × · · · × γ1 on RP∞ × · · · × RP∞ from γm (see problem sheet 1 on characteristic classes) and show that the image of
H∗(Gm(R∞),Z/2) under the induced map

H∗(Gm(R∞),Z/2)→ H∗(RP∞ × · · · × RP∞,Z/2) (1)

contains the algebra of symmetric polynomials;deduce that all differentials in the cellular chain and cochain complexes of
Gm(R∞) are zero, the map (1) is injective and its image is precisely the algebra of symmetric polynomials.]

Question 2. Show that H∗(Gm(C∞),Z) is the algebra of polynomials in c1(γm), . . . , cm(γm) over Z. [Hint: one could
use the strategy from the previous question, but with some modifications: this time all differentials are clearly zero, as all
cells have even dimension, but the fact that the rank of the image of

Hn(Gm(C∞),Z)→ Hn(CP∞ × · · · × CP∞,Z)

coincides with rank of the degree n/2 component of the algebra of symmetric polynomials over Z does not immediately
imply that these groups coincide, as the former may contain the latter as a subgroup of finite index; on the other hand, the
fundamental theorem of symmetric polynomials is true over any commutative ring.]

The Gysin sequence
Next we calculate the cohomology of G̃m = G̃m(R∞). We will only need to do this for rational coefficients. Even so, I

don’t know how to do this without spectral sequences. If you have a solution that does not use them, please let me know.
The one given below uses the Gysin sequence, which is a particular case of the Leray spectral sequence in disguise.

Question 3. (a) Show that if p : E → X is an oriented vector bundle of rank r, then there is a long exact sequence

· · · −→ Hi(X,Z)
^e(E)−→ Hi+r(X,Z)

p∗

−→ Hi+r(0,Z) −→ Hi+r(X,Z)
^e(E)−→ · · · .

Here E0 is E minus the zero section. This is the Gysin exact sequence. Clearly, in this sequence we can replace E0 with the
spherisation S(E) of E with respect to some metric.

(b) Show that with coefficients mod 2 the above sequence exists even when E is not assumed orientable, if one replaces
e(E) by eR(E) from problem sheet 2 on characteristic classes, question 4.

(c) If X̃ → X is a double cover, construct a real line bundle E → X the spherisation of which is X̃. So applying part (b)
we get a long exact sequence which involves the cohomology of X̃ and X.

Question 4. This question is for those who already know spectral sequences.
(a) Let p : E → X, r and E0 be as in part (a) of the previous question. In particular, we again suppose that E is oriented.

Show that the bundle p : E0 → X is cohomologically simple and deduce the Gysin exact sequence from the Leray spectral
sequence of p : E0 → X.
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(b) Let us denote this spectral sequence (Ep,q
s ). We now suppose X is path connected, so E0,r−1

2
∼= Z. Let a be the

positive generator of this group (specify what exactly this means). Show that dr(a) = e(E). [Hint: show that both these
classes generate the same subgroup of Hr(X,Z); what is this subgroup?]

Pontrjagin classes
If E → X is a real vector bundle of rank r then we define the i-th Pontrjagin class pi(E) of E as (−1)ic2i(E ⊗ C) and

we set the total Pontrjagin class of E to be 1 + p1(E) + · · ·+ p[ r
2 ](E). Note that these are invariants of real vector bundles

which take values in integral cohomology.
Question 5. (a) Show that if E → X is a real vector bundle, then E⊗C is a complex vector bundle which is isomorphic

to its dual. Show that if E has rank 2, then E ⊗ C = L⊕ L∗ where L is a complex line bundle.
(b) Deduce from question 5 from problem sheet 2 on characteristic classes that all odd Chern classes of E ⊗ C have

order 2.
This at least partially explains why one discards odd Chern classes in the definition of the Pontrjagin classes. One could

also ask what the sign (−1)i is doing there. The answer is: it makes some formulae nicer and some other less nice. We will
see an example of the former in a minute but I suspect the main reason for including the sign is historical: it has always
been there.

Question 6. Suppose E,F → X are two real vector bundles. Show that modulo elements of order 2 we have p(E⊕F ) =
p(E)p(F ).

Question 7. (a) Show that if we take a complex vector bundle E → X, then forget the complex structure and complexify
it again, we get E ⊕ E∗.

(b) Express the Chern classes of E ⊕ E∗ is terms of the Chern classes of E.
(c) Show that the total Pontrjagin class of CPn is (1 − a2)n+1. Here a ∈ H2(CPn,Z) is the generator compatible with

the complex structure.

Question 8. Can you find for every positive integer r a real vector bundle E → X of rank r such that none of the classes
c1(E ⊗ C), . . . , cr(E ⊗ C) is zero?

Question 9. Suppose E → X is an oriented real vector bundle of rank r = 2s.

(a) Show that E ×C is isomorphic to E ⊕E or E ⊕E with the orientation reversed, depending on whether (−1)
r(r−1)

2 is
even or odd.

(b) Prove that e(E)2 = ps(E).

Orientable infinite Grassmannians
Question 5. We want to show by induction on m that H∗(G̃m,Q) is a polynomial algebra in p1(γ̃m), . . . , p[m

2 ](γ̃
m) for

odd m and p1(γ̃m), . . . , p[m−1
2 ](γ̃

m), e(E) for even m.

(a) Show that the space
G̃1 = S0 ⊂ S1 ⊂ S2 ⊂ · · ·

with the direct limit topology is contractible. This space is called the infinite-dimensional sphere and denoted S∞.
(b) Let S be the spherisation of the vector bundle γ̃m on G̃m and let p : S → G̃m be the projection. Show that S

is also fibered over S∞ and let q be the projection of that fibration. Show that if x ∈ S∞ then the fibre Sx = q−1(x) is
homeomorphic to G̃m−1. Deduce that S is homotopy equivalent to G̃m−1. [Hint: one could use part (a) and the fact that
the total space of a Serre fibration over a contractible space is homotopy equivalent to the fibre; why by the way?]

(c) Show that moreover, we can identify Sx with G̃m−1 so that the bundle p∗(γm) will split as ε1 ⊕ γ̃m−1.
(d) Show that if m is even, then multiplication by the Euler class of γm is an injective map H∗(G̃m,Q)→ H∗+m(G̃m,Q).

[Hint: to show this we only need to show the same result for at least one oriented bundle over at least one space; we already
have seen such an example in this problem sheet.]

(e) A commutative graded algebra over a ring R with unit is a graded R-module A∗ = (An)n∈Z equipped with a multipli-
cation which has the following properties: if x ∈ An and y ∈ Am, then xy ∈ An+m and xy = (−1)mnyx. In the sequel we
will only consider graded algebras with a unit (which necessarily ∈ A0) which are non-negatively graded, i.e.A<0 = 0. As
an example one could take the cohomology ring H∗(X,R) for an arbitrary space X. From now on R will be a field.

Suppose A∗ and B∗ are commutative non-negatively graded algebras over Q. Suppose m ∈ Z>0 and an element e ∈ Am

has the property from part (c): namely, multiplication by e is an injective map A∗ → A∗+m. Note that this implies that m
is even, unless the characteristic of R is 2. Suppose that B∗ is a polynomial algebra in p1, . . . , pk such that every pi lives in
some Bl. Suppose there is an exact sequence

0 −→ A∗
·e−→ A∗+m −→ B∗ −→ 0

in which the map on the right is a homomorphism of commutative graded algebras. Show that A∗ is a polynomial algebra
in p̄1, · · · , p̄k, e. Here p̄i is a lift of pi ∈ Bl to Al. [Hint: free algebras.]

(f) Deduce using part (e) and the Gysin sequence that if m is even, then H∗(G̃m,Q) is a polynomial algebra in
p1(γ̃m), . . . , pm

2 −1(γ̃m), e(γ̃m). Show also that pm
2

(γ̃m) = e(E)2.

(g) We suppose from now on that m is odd. Deduce from the Gysin sequence that H∗(G̃m,Q) is contained in H∗(G̃m−1,Q)
as a ring and that

dimHi(G̃m−1,Q) = dimHi(G̃m,Q) + dimHi−m(G̃m,Q).
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(h) We know by the induction hypothesis that the cohomology ring H∗(Gm−1, Q) is a polynomial algebra in

p1(γ̃m−1), . . . , pm−1
2 −1

(γ̃m−1)

and e(γ̃m−1); it also contains pm−1
2

(γ̃m−1) but this class is e(γ̃m−1)2. On the other hand, the ring H∗(Gm,Q) contains

p1(γ̃m), . . . , pm−1
2

(γ̃m). Use this and part (g) to show that H∗(Gm,Q) is a polynomial algebra in p1(γ̃m), . . . , pm−1
2

(γ̃m).

Question 11. Using Question 3 (c) prove that H∗(G̃m,Z/2) a polynomial algebra in w2(γ̃m), . . . , wm(γ̃m).
(b) Deduce that e(γ̃m) is non-zero if m > 1.
So in particular, the Euler class of an oriented vector bundle of odd rank need not be 0.

Note that it is also possible to calculate the cohomology of Gm and G̃m with integral coefficients. We will not need this,
but if you’re interested, you can have a look at the paper E.H. Brown, The cohomology of BSO(n) and BO(n) with integer
coefficients, Proc. AMS 85 (1982), no. 2, 283-288.

The splitting principle for oriented real vector bundles
Question 12. In problem sheet 1 on characteristic classes we saw the splitting principle for complex vector bundles.

There is a similar theorem for real vector bundles and cohomology mod 2. The proof is almost exactly the same as in the
complex case. Further modifying the proof and using question 10 show the following version of the splitting principle:

Suppose E → X is a real oriented vector bundle of rank r. Then there is a space Y and a map p : Y → X such that the
induced map p∗ : H∗(X,Q)→ H∗(X,Q) is injective and

• p∗(E) = E1 ⊕ · · · ⊕ E r
2

if r is even;

• p∗(E) = E1 ⊕ · · · ⊕ E r−1
2
⊕ ε1 if r is odd.

Here Ei’s are oriented rank 2 vector bundles on Y .
Note that it follows from question 5 (a) that for each i we have Ei ⊗ C ∼= Li ⊕ L∗i , where Li are line bundles on Y .
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