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In this problem sheet we calculate the right hand side of the index formula for several classical differential operators. But
first we need a little bit of K-theory.

The Grothendieck group
Question 1. Suppose that (M,+) is a(n associative) commutative monoid. Recall that M has an identity element,

which we denote 0. A typical example would be the set Z≥0 of non-negative integers with the addition operation. We set
K0(M) to be the set of all couples (m,n) ∈ M2 modulo the equivalence relation (m1, n1) ∼ (m2, n2) iff there is a k ∈ M
such that m1 + n2 + k = m2 + n1 + k.

(a) Show that this is indeed an equivalence relation. Show also that if (m1, n1) ∼ (m2, n2) and (m′1, n
′
1) ∼ (m′2, n

′
2), then

(m1 +m′1, n1 + n′1) ∼ (m2 +m′2, n2 + n′2).
(b) Show that component-wise addition on M2 induces an operation on K0(M) which is in fact a group operation. Show

also that the map i which takes m ∈M to the class of (m, 0) is a monoid homomorphism.
(c) Show that K0(M) is universal in the following sense: if G is an abelian group and f : M → G is a monoid

homomorphism, then there is a unique group homomorphism f̄ : K0(M)→ G such that the following diagram commutes:

M
i //

f
##

K0(M)

f̄

��
G

Show also that if K0′(M) is another abelian group with this property, then K0(M) is isomorphic to K0′(M), and the
isomorphism is unique if one requires it to commute with the monoid maps from M .

Basically, this is just the construction of negative numbers in a fancy guise. If M = Z≥0, then (m,n) represents the
number m− n.

Integers can not only be added, they can also be multiplied. Let us try to incorporate this in our construction. Suppose
that M as above is equipped with another operation ·. As usual, we will often write mn for m · n for m,n ∈ M and the
operation · is often referred to as multiplication. The triple (M,+, ·) is called a semiring iff m(n + k) = mn + mk and
(n+ k)m = nm+ km and 0 ·m = m · 0 = 0 for all m,n, k ∈M . We say that M is commutative, respectively associative, if ·
is commutative, respectively associative.

Question 2. Suppose (M,+, ·) is a commutative associative semiring with a multiplicative identity 1.
(a) Mimicking the construction of multiplication of integers we introduce a multiplication on M2:

(m1, n1) · (m2, n2) = (m1m2 + n1n2, n1m2 +m1n2),m1,m2, n1, n2 ∈M.

Show that this turns K0(M) into a commutative associative ring with the identity element being the equivalence class of
(1, 0). Show also that the map i from question 1 is a semiring homomorphism.

(b) State and prove the analogue of part (c) of the previous question with an abelian group G replaced by an associative
commutative ring R with identity element.

We will not go into algebraic K-theory in any detail, but nevertheless we will mention a couple of examples.
Question 3. (a) Set M to be the set of isomorphism classes of finitely generated projective modules over a ring R. Then

the group K0(M) is denoted K0(R). Show that if R is a field or Z, then K0(R) ∼= Z, with the isomorphism given by rank.
(b) Show however that if in part (a) one does not require the modules to be finitely generated, then one ends up with

a monoid M such that K0(M) = 0. Chances are, the argument you will find will be the same as the one discovered by S.
Eilenberg in 1950’s, hence the term Eilenberg swindle.

Now let X be a topological space and set M to be the set of isomorphism classes of complex vector bundles on X (of finite
rank). The group K0(M) is then denoted K(X). If X is compact and Hausdorff, this group coincides with K0(X) which is
defined as the set of homotopy classes of continuous maps X → BU . We will prove this later. The groups K0(X) are more
tractable, as they extend to a cohomology theory K∗(−), while the groups K(X) are a bit mysterious for non-compact X.
Note however that if X is paracompact and Hausdorff, e.g. a CW-complex, then there is a homomorphism K(X)→ K0(X)
which is functorial in X.
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Note that if X is compact and Hausdorff, then R.S̃wan’s theorem says that

K(X) ∼= K0(X) ∼= K0(C(X,C))

where C(X,C) is the ring of all complex-valued continuous functions on X. If M is a smooth manifold, then one can replace
continuous functions with smooth functions in this theorem.

Question 4. Prove that the Chern character map ch extends to a ring homomorphism ch : K(X)→ H∗∗(X,Q).

We will also need relative K-groups. Given a topological pair (X,Y ) we set M to be the monoid of all equivalence classes
of triples (E,F, f) where E,F are finite rank complex vector bundles over X and f : E|Y → F |Y is an isomorphism; two
couples (E,F, f) and (E′, F ′, f ′) are equivalent iff there are isomorphisms g : E → E′ and h : F → F ′ such that the following
diagram commutes:

E|Y
f //

g

��

F |Y

h

��
E′|Y

f ′
// F ′|Y

The operation on M is component-wise direct sum. We set K(X,Y ) to be the quotient of K(M) by the subgroup generated
by the classes of all triples (E,F, f) such that f extends to an isomorphism E → F .

If (X,Y ) is a CW-pair, then we can double X along Y . This means we can take two copies X1, X2 of X and glue them
along Y . Let X ′ be the resulting space.

Question 5. (a) Supposing X,Y,X ′ are as above, prove that X ′ retracts onto Y .
(b) Prove that there is a map ch : K(X,Y )→ H∗∗(X,Y ) such that the following diagram commutes

K(X,Y ) //

ch

��

K(X)

ch

��
H∗∗(X,Y,Q) // H∗∗(X,Q)

where the top arrow takes a triple (E,F, f) as above to the class of E in K(X) minus the class of F .

The de Rham operator
Recall that γ̃m is the tautological oriented bundle over the infinite orientable Grassmannian G̃m = BSO(m). In this

problem sheet we suppose that m is even and set l = m
2 . Using question 12 from the previous problem sheet on characteristic

classes we construct a CW-complex X and a map q : X → G̃m which induces an injective map in rational cohomology and
such that q∗(γ̃m) is a direct sum E1 ⊕ · · · ⊕El of oriented rank 2 bundles. By complexifying all bundles and using question
5 from ibid. we see that

q∗(γ̃m ⊗ C) = L1 ⊕ L∗1 · · · ⊕ Ll ⊕ L∗l
where Li are complex line bundles chosen so that Li ∼= Ei as oriented real rank 2 bundles. We set xi = c1(Li) (so
c1(L∗i ) = −xi).

Question 6. (a) Show that

ch(Λeven(q∗γ̃m)⊗ C− Λodd(q∗γ̃m)⊗ C) =

l∏
i=1

(1− exi)(1− e−xi).

(b) Show that the Euler class of q∗(γ̃m) is
∏l
i=1 xi.

Finally, the total Todd class of a complex vector bundle E → X of rank r is defined as follows: express

r∏
i=1

xi
1− e−xi

using elementary symmetric polynomials in x1, . . . , xr and substitute ci(E) for the i-th elementary symmetric polynomial.
The resulting element of H∗∗(X,Q) is the total Todd class Td(E) of E.

Question 7. Prove that

ch(Λeven(γ̃m)⊗ C− Λodd(γ̃m)⊗ C) Td(γ̃m ⊗ C) = (−1)l(e(γ̃m)2.

Let us now equip γ̃m with a metric. We denote the resulting unit disk and unit sphere bundles D and S. Let p be the
projection from the total space of γ̃m to G̃m.

Question 8. Let ξ be an element of the fibre γ̃x of γ̃m over x ∈ G̃m. Prove that − ∧ ξ + iξ induces an isomorphism
between Λeven(γ̃m) and Λodd(γ̃m) pulled back to the fibre Sx of S over x. Here − ∧ ξ is exterior multiplication by ξ and iξ
is substitution of ξ into an element of Λi(γ̃x). Use this to construct an isomorphism σ between the pullbacks of Λeven(γ̃m)
and Λodd(γ̃m) to S.
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Set d = d(p∗Λeven(γ̃m) ⊗ C, p∗Λodd(γ̃m) ⊗ C, σ). This is an element of K(D,S) and we want to calculate Th−1(ch(d))
where

Th : H∗(G̃m,Q)→ H∗(D,S,Q)

is the rational Thom isomorphism given by x 7→ x ^ u with u = the rational Thom class, see problem sheet 1 on characteristic
classes.

Question 9. (a) Let E → X be an oriented real vector bundle of rank r with a metric. Let D(E), respectively S(E), be
the unit disk bundle, respectively the unit sphere bundle. Show that the composite map

H∗(X)
Th→ H∗+r(D(E), S(E))→ H∗(D(E))

∼=→ H∗(X)

is multiplication by the Euler class e(E).
(b) Using part (a) and the fact that ch is a natural transformation show that

Th−1(ch(d))e(γ̃m) = ch(Λeven(γ̃m)⊗ C− Λodd(γ̃m)⊗ C).

Question 10. Prove using the fact that H∗(G̃m,Q) has no zero-divisors that

Th−1(ch(d)) Td(γ̃m ⊗ C) = (−1)le(γ̃m).

Now recall that the Atiyah-Singer index theorem gives the following recipe for calculating the index of an elliptic differential
operator D : Γ(E)Γ(F ), where E,F are smooth complex vector bundles over a smooth compact orientable manifold M of
dimension m: let p : T ∗M → M be the projection. We equip M with a Riemannian metric and let D(T ∗M) and S(T ∗M)
be the corresponding unit disk bundle and unit sphere bundle respectively. The symbol σ = σD of D restricted to S∗(T ∗M)
gives us an isomorphism σ : p∗(E)→ p∗(F ). This isomorphism in turn gives us an element dD in K ∗ (D(T ∗M), S(T ∗M)),
namely

dD = d(p∗E, p∗F, σ).

We then have to evaluate the Th−1(dD) Td(T ∗M ⊗ C) on the fundamental class of M :

indexD = (−1)
m(m+1)

2

∫
M

Th−1(dD) Td(T ∗M ⊗ C).

Note that D participates in this formula only via its symbol σ, which is purely topological object: namely, it is a section of
the Hom bundle Hom(p∗E, p∗F ).

Question 11. We know that if E = Λeven(T ∗M), F = Λodd(T ∗M) and D = d+ d∗, then the symbol σ of D at ξ ∈ T ∗xM
is given by

− ∧ ξ + iξ.

Prove that the index of D is equal
∫
M
e(T ∗M).

The signature operator
So we see that the index theorem implies that the Euler characteristic of an orientable even-dimensional manifold is the

Euler class evaluated on the fundamental class of M . This is reassuring, but a bit boring: it is not too hard to prove this
without the index theprem, see e.g. Milnor-Stasheff, Characteristic classes, Corollary 11.12.

Question 12. Let V be a finite-dimensional vector space over a field k of characteristic 6= 2 and let q : V → k be
a quadratic form. Prove that the Clifford algebra Cl(V, q) is isomorphic as a vector space to the exterior algebra Λ∗V
functorially in V (in particular, the isomorphism depends only on V and not on q).

Question 13. Let k, V, q be as above. You may assume that k = R and q is positive definite. Set n = dimk V . Using
the isomorphism from question 1, describe the Hodge star operator

∗ : Λi(V )→ Λn−iV

in terms of the Clifford multiplication. [Hint: choose an orthogonal basis and consider the product of all its elements; there
might be sign issues to take care of.]

Question 14. Let k be as above and let (V, q1) and (W, q2) be finite-dimensional k-vector spaces equipped with quadratic
forms q1, q2. Let q1 ⊕ q2 be the direct sum of q1 and q2. Set n = dimk V,m = dimkW and let ∗V , ∗W , ∗V⊕W be the Hodge
star operators on V,W and V ⊕W equipped with the quadratic forms q1, q2 and q1 ⊕ q2 respectively. We assume that both
m and n are even.

(a) Prove that
∗V⊕W (x ∧ y) = (−1)ij ∗V (x) ∧ ∗W (y)

for all x ∈ ΛiV, y ∈ ΛjW .
We now define operators αV , αW and αV⊕W on the complexified exterior algebras Λ∗V ⊗C,Λ∗W ⊗C and Λ∗(V ⊕W )⊗C

respectively using the formula from the lectures

αV (x) = (i)p(p−1)+ n
2 ∗V (x)
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for x ∈ Λp(V )⊗ C, and similarly for W and V ⊕W .
(b) Prove that

αV⊕W (x ∧ y) = αV (x) ∧ αW (y)

for all x ∈ ΛiV ⊗ C, y ∈ ΛjW ⊗ C.
(c) Show that α2 = Id. So the exterior algebra Λ∗V ⊗C decomposes as Λ∗(V )⊗C = Λ+V ⊕Λ−V where Λ± denotes the

eigenspaces of α with eigenvalues ±1, and similarly for W and V ⊕W . Deduce that there is an isomorphism of Z/2 graded
vector spaces

Λ∗(V ⊕W )⊗ C ∼= (Λ∗V ⊗ C)⊗ (Λ∗W ⊗ C).

Question 15. (a) Now let E,F → X be real vector bundles equipped with metrics. Let n and m be the ranks of E and
F respectively. Using the above define the Hodge star operators

∗E : ΛpE → Λn−pE, ∗F : ΛpF → Λm−pF, ∗E⊕F : Λp(E ⊕ F )→ Λn+m−p(E ⊕ F )

and the corresponding α operators

αE : ΛpE ⊗ C→ Λn−pE ⊗ C, αF : ΛpF ⊗ C→ Λm−pF ⊗ C, αE⊕F : Λp(E ⊕ F )⊗ C→ Λn+m−p(E ⊕ F )⊗ C.

(b) Prove that
Λ∗(E ⊕ F )⊗ C ∼= (Λ∗E ⊗ C)⊗ (Λ∗F ⊗ C)

as Z/2-graded bundles, with the grading induced by the decomposition of the bundles into the eigensubbundles of the α
operators with eigenvalues ±1.

(c) We now let Λ± denote the eigensubbundles of Λ∗(−)⊗ C which correspond to the eigenvalues ±1 of the α operator.
Using the splitting principle prove that

ch(Λ+E − Λ−E)

can be obtained as follows: express the product
n/2∏
i=1

(e−xi − exi)

in terms of the elementary symmetric polynomials in xi and then substitute ci(E ⊗ C) for the i-th elementary symmetric
polynomial.

Question 16. (a) Mimicking the proof for the de Rham operator from the previous section prove that the signature of
a smooth compact orientable manifold M of even dimension n (and without boundary) can be obtained as follows: express
the product

n/2∏
i=1

xi
tanh(xi/2)

in terms of the elementary symmetric polynomials in x2
i , then substitute pi(E) for the i-th elementary symmetric polynomial

and evaluate the result on the fundamental class of M .
(b) Show that in part (a) instead of

∏n/2
i=1

xi

tanh(xi/2) one could use
∏n/2
i=1

xi

tanh xi
.

(c) Find an explicit formula for the signature of M in terms of the Pontrjagin classes if n = 4 and 8.
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